محیط متخلخل
۳-۱ مقدمه
می‌توان اذعان داشت که بیشتر موضوعاتی که در پیرامون ما اتفاق می‌افتد، به کمک محیط‌های متخلخل قابل تحلیل و بررسی است. برای مثال در اواخر قرنی که گذشت بیشتر کشورها و سیاست مدارانشان برای بهره‌برداری از روش‌های استفاده از منابع انرژی، غیر از سوخت‌های فسیلی و هسته‌ای تصمیمات تازه‌ای گرفتند. مثلا انرژی تولید شده توسط جریانات گرم زیرزمینی که می‌تواند برای بعضی کشورها به عنوان منبع انرژی ثانویه مورد استفاده واقع گردد. یک سیستم بسیار موثر برای استخراج انرژی در اینجا فقط از طریق مطالعه سیستماتیک جریان در محیط متخلخل ممکن و میسر است.
(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت nefo.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))

امروزه در بسیاری از کاربردهای صنعتی، مواد متخلخل نقش بسیار مهمی در طراحی و توسعه فرآیندها بازی می‌کنند. به عنوان مثال در صنایع آلیاژسازی هنگام درست کردن آلیاژ، بین فازهای جامد و مایع ناحیه خمیرشکلی وجود دارد که حاوی ذرات جامد و سیال است و می‌توان آن را توسط محیط متخلخل غیرایزوتروپ همراه با نفوذپذیری متغیر در جهات مختلف مدلسازی کرد. سایر کاربردهای صنعتی، نظیر جریان گذرنده از شبکه‌های یک مبدل حرارتی، اکتشاف نفت از منابع زیرزمینی و. . . را نیز می‌توان به کمک محیط‌های متخلخل بررسی و تحلیل نمود. لازم به ذکر است که در بیشتر کاربردهای صنعتی و طبیعی، تغییرات دما و غلظت موجب تفاوت چگالی میان دو مکان شده که این به نوبه خود باعث ایجاد جریان می‌گردد. مثال آن را می‌توان در صنایع جداسازی و رسوب‌گیری، صنایع غذایی و غیره یافت. پدیده‌ای که به عنوان ترکیبی از انتقال حرارت و جرم باشد معمولا از ان به عنوان پخش دوتایی[۴۴] در محیط متخلخل یاد می‌شود. با توجه به اهمیت این موضوع و از طرفی کمی اطلاعات در این زمینه، در آغاز قرن گذشته برای توصیف محیط متخلخل تنها از رابطه ساده دارسی[۴۵] استفاده می‌شد. کم‌کم دانشمندان به سمت مدل‌های بهتر و جامع‌تری روی آورند. امروزه باب این مسئله برای بحث و تحقیق هنوز باز می‌باشد. هم‌اکنون مدل عمومی محیط‌های متخلخل دارای زمینه‌ای بسیار وسیع و گسترده می‌باشد و می‌توان آن را بسته به نوع کاربرد به زیرمجموعه‌های مختلفی تقسیم کرد که بسیاری از این شاخه‌ها نیازمند تحلیل و بررسی هستند. برای مثال، محیط همراه با تخلخل متغیر، وجود اتلاف حرارتی در محیط، ساختارهای نیمه متخلخل، محیط‌های متخلخل غیرهمگن، محیط‌های متخلخل با قابلیت انعطاف‌پذیری، ساختارهای متخلخل موجود در مباحث زمین‌شناسی و. . . . موارد فوق‌الذکر بخش کوچکی از مبحث محیط‌های متخلخل را تشکیل می‌دهد.
در این فصل با توصیف محیط‌های متخلخل، به بررسی معادلات حاکم بر این محیط‌ها پرداخته می‌شود. مطالب این بخش از مرجع ]۲۸[ آورده شده است.
۳-۲ توصیف محیط‌های متخلخل
برای حل بسیاری از کاربردهایی که در قسمت قبل بیان شد، لازم است فیزیک انتقال حرارت و جریان عبوری از محیط‌های متخلخل بخوبی درک شود. در برخی از کاربردهای مهم این محیط‌ها، مثل فرآیندهای خشک کردن و غیره، محیط متخلخل در تماس با یک سیال تک فازی است. لذا سطح مشترک بین فاز جامد و سیال بسیار مهم می‌باشد که باید به خوبی و به صورت کامل تخمین زده شود. در این راستا فعالیت‌های مهمی جهت مدلسازی ریاضی جریان عبوری از محیط متخلخل صورت گرفته است که جزئیات این مدل‌ها قابل بحث است.
یک محیط متخلخل معمولا به صورت ترکیبی از یک شبکه ماتریسی جامد و حفره‌هایی که درون این شبکه قرار دارند در نظر گرفته می‌شود. این حفره‌ها میتوانند به یکدیگر راه داشته و یا نسبت به هم منفصل و جدا‌جدا باشند. اگر در محیط متخلخلی این حفره‌ها به هم راه داشته باشد و سیالی که به درون این حفره‌ها می‌رود آن‌ها را کاملا پرکند، اصطلاحا این محیط متخلخل، محیط متخلخل اشباع شده[۴۶] نامیده می‌شود. محیط متخلخل اشباع نشده[۴۷] به محیطی گفته می‌شود که سیال در حالت کلی تنها بخشی از فضای موجود در حفره‌ها را پرکرده باشد و تمام حفره‌ها به هم راه ندارند. لذا سیال نمی‌تواند همه‌جا را پرکند. نوعی از محیط متخلخل در شکل (۳-۱) نمایش داده شده است. همانطور که ملاحظه می‌شود، محیط متخلخل به صورت طبیعی دارای هندسه‌ی نامنظمی است. محیط‌های متخلخلی که در کاربردهای مهندسی یافت می‌شوند، از ذرات جامد مثل ساچمه‌ها یا کره‌ها تشکیل می‌شوند. شکل (۳-۲) محیط متخلخلی را نشان می‌دهد که از کره تشکیل یافته است.
شکل ۳-۱: یک نمونه محیط متخلخل طبیعی]۲۸[
.
محیط‌های متخلخل متشکل از ذرات جامد به طور وسیع در صنایع شیمیایی یافت می‌شوند که یکی از مهمترین آن‌ها بسترهای متشکل‌ از ذرات به هم چسبیده در راکتورها و همچنین مواد فیبری شکل می‌باشند. هنگامیکه هوا در فضای حفره‌ای به دام می‌افتد، هدایت حرارتی کل محیط پایین می‌آید و از این محیط می‌توان به عنوان یک عایق حرارتی استفاده کرد که کاربردهای فراوانی دارند.

شکل ۳-۲: یک نمونه محیط متخلخل استفاده شده در کاربردهای صنعتی]۲۸[

۳-۳ روش‌های میکروسکوپی و ماکروسکوپی
تعیین خواص ماکروسکوپی محیط‌های متخلخل موضوع بسیار دشواری است. در نگاه اول به نظر می‌رسد که استفاده از دو استراتژی متفاوت، برای حل مسائل پیچیده محیط‌های متخلخل اشباع شده برای ما میسر باشد. استراتژی اول که ممکن است به ذهن برسد حل دقیق مسئله است. اگرچه استراتژی فوق برای حالات خاص می‌تواند موفقیت‌آمیز باشد ولی جهت توسعه‌ی یک تئوری کلی در محیط‌های متخلخل، کاملا نامناسب است. چرا که هر دو پدیده انتقال حرارت و جریان سیال به شدت وابسته به ساختار ذره‌بینی اجسام متخلخل می‌باشند و از طرفی در حالات کلی، محیط متخلخل دارای ساختار هندسی پیچیده داخلی است. برای نشان دادن این وابستگی به ساختار میکروسوپی، نمونه‌ای از یک جسم متخلخل در شکل (۳-۳) قابل ملاحظه است.

شکل ۳-۳: حجم معیار اولیه از محیط متخخل اشباع شده]۲۸[

فرض می‌شود این نمونه به اندازه کافی بزرگ باشد تا فرض پیوستگی برای هر دو فاز جامد و مایع معتبر باشد. آنگاه فرموله کردن معادلات بقای انرژی، جرم و مومنتوم در هر دو فاز به فرم دیفرانسیل کاملا معقول به نظر می‌رسد. نتیجه این فرمولاسیون یک سری معادلات دیفرانسیل پاره‌ای کوپل شده به هم می‌باشد. مشکلات هنگام مشخص نمودن شرط مرزی داخلی مابین فاز جامد و مایع آغاز می‌شود. مثلا در مسئله انتقال حرارت هدایتی یک شرط مرزی اساسی، مطابقت شارهای حرارتی و دما در مرز مشترک برای دو فاز است و این شرط مرزی تابعی از شکل هندسی سطح مشترک دوفاز است. در شکل (۳-۳) پیچیدگی مرز هندسی مابین دوفاز مشخص است. درصورتی که در مواد واقعی، این هندسه بسیار پیچیده‌تر و حتی به صورت سه بعدی است. با این اوصاف می‌توان نتیجه گرفت که آنالیز فرآیندهای انتقالی در محیط‌های متخلخل به طور ذاتی سخت و انجام ناپذیر است. به ناچار باید از دیدگاه ماکروسکوپی بهره گرفت. در این دیدگاه، تمام محیط متخلخل به صورت یک محیط پیوسته که از متوسط‌گیری متغیرهای میکروسکوپی بدست آمده است، در نظر گرفته می‌شود. بنابراین عمل متوسط‌گیری مکانی روی یک حجم معیار که حجم معیار اولیه[۴۸] نامیده می‌شود، انجام می‌گیرد. شکل (۳-۴) مثالی از یک حجم معیار اولیه است. مفهوم حجم معیار اولیه به طور اساسی برای اولین بار در تکنیک متوسط‌گیری حجمی توسط ویتاکر[۴۹] معرفی شد که هم اکنون پایه‌ای برای کارهای بسیاری است که بر محیط‌های متخلخل صورت می‌گیرد. حجم معیار اولیه باید به گونه‌ای باشد که مقادیر متوسط‌گیری شده مورد نظر مستقل از اندازه حجم اولیه باشد. یعنی اگر مقداری ماده متخلخل به این حجم معیار اولیه اضافه گردد، تغییری در مقدار خواص محلی صورت نگیرد. به عبارتی دیگر طول مشخصه حجم معیار اولیه باید بزرگتر از مقیاس حفره‌ها و کوچکتر از ابعاد منطقه ماکروسکوپی باشد. همانطور که در شکل (۳-۴) نشان داده شده است.

شکل ۳-۴: حجم معیار اولیه در محیط متخلخل]۲۸[

استفاده از متغیرهای ماکروسکوپی، تعریف خواص موثر[۵۰] را موجب می‌شود که به صورت تجربی جهت اعمال اثرات ساختار ذره‌بینی، تعریف می‌شوند. بسیاری از توسعه‌های تئوری حول این محور دور می‌زند که بتوان فرآیندهای میکروسکوپی را به منظور پیش‌بینی خواص موثر ماکروسکوپی مدلسازی کرد. برای توصیف جریان گذرنده از یک محیط متخلخل در دیدگاه ماکروسکوپی، لازم است متغیرهایی تعریف شوند که توسط آن‌ها بتوان فضایی از محیط متخلخل که برای جریان سیال وجود دارد را محاسبه نمود. یکی از این خواص تخلخل[۵۱] نام دارد و برابر است با نسبت حجم حفره‌ها به حجم کل محیط متخلخل. برای مواد طبیعی تخلخل به صورت معمولی کمتر از ۶/۰ می‌باشد. برای بستر‌هایی که از ذرات کروی با قطر یکنواخت تشکیل شده‌اند تخلخل می‌تواند در محدوده‌ی ۲۵۴۵/۰ تا ۴۷۶۴/۰ قرار بگیرد. اگر اندازه این ذرات غیر‌یکنواخت باشد، تخلخل‌های کوچکتر از مقادیر فوق نیز قابل دسترسی است. چرا که ذره‌های کوچکتر حفره‌های بین ذرات بزرگتر را می‌توانند پرکنند. برای موادی ساخته شده توسط بشر، تخلخل می‌تواند به مقدار یک بسیار نزدیک باشد. در جدول (۳-۱) تخلخل و سایر خواص مواد متخلخل متداول آورده شده است.
جدول ۳-۱: تخلخل و نفوذپذیری چند محیط متخلخل]۲۹[

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...