فایل شماره 5532 |
اگر به ازای هر پس جواب استوار Ps است. ممکن است جوابهای استوار زیادی وجود داشته باشد. جواب استوار مدل بالا بهترین جواب استوار است.
۲-۳-۴٫ بهینهسازی استوار شبکههای لجستیکی
در دنیای واقعی شبکههای لجستیکی به کرات با دادههای غیرقطعی مواجه میشوند. چشمپوشی از هر کدام از آنها ممکن است باعث اتلاف منبع و عملکرد ضعیف شبکه گردد. تحقیقات نقش سودمند بهینهسازی استوار را برای مدیران و تصمیمگیرندگان جهت حل عاقلانهی مسائل غیرقطعی لجستیک نشان میدهند. علاوه بر این نتایج به دست آمده از مجموعه دادههای دنیای واقعی نشان میدهد که مدل بهینهسازی استوار در هنگام مواجهه با شرایط اقتصادی آینده واقعگرایانه تر است.
(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))
۲-۳-۵٫ چالشهای بهینهسازی استوار
علیرغم سادگی پیادهسازی این روش و کاربردش در مدلسازی موارد دنیای واقعی، نمیتوان از چند محدودیتی که این روش با آن سر و کار دارد چشمپوشی کرد. دو نقص عمدهی بهینهسازی استوار مبتنی بر سناریو (۱) چگونگی تعیین تعداد سناریوهایی که برای دستیابی به جواب استوار لازم است و (۲) چگونگی ایجاد این سناریوها و تعیین احتمالات مربوط به آنها است (Yin et al., 2009). به همین دلیل تحقیقاتی در ارتباط با محدودیتهای این روش انجام گرفته است. به عنوان مثال از روشهای واریانس تخفیف یافته میتوان برای تولید سناریوهای لازم استفاده کرد.
۲-۴٫ نتیجهگیری از تحقیقات گذشته و بیان ایدههای تحقیق
همان طور که در بخشهای قبلی این فصل مشاهده کردیم سیر تاریخی پیدایش مسائل مکانیابی محور به ویژه مسائل تخصیص ساده و چندگانه در حالتهای ظرفیت محدود و ظرفیت نامحدود به خوبی تشریح شده است. در اوایل پیدایش این علم تمرکز بیشتر بر روی نحوهی مدلسازی این مسائل بود. به نحوی که از همان اواخر دهه ۸۰ تا اواخر دهه ۹۰ میلادی هر دفعه محققان با بررسی مدلهای متنوع این نوع مسائل سعی در سادهسازی فرمول نویسی و بیان ریاضی آن داشتند. ابتدا مسائل به صورت غیرخطی و درجه دوم بود و هدف تنها کمینه کردن هزینههای تحمیلشده به کل شبکه بود، اما با گذشت زمان و کاملتر شدن مدلهای این نوع مسائل، مسائل به سمت توابع خطی و درجه اول رفت و کمکم هزینههایی مانند هزینهی جمع آوری[۱۶]، هزینهی توزیع[۱۷] و هزینهی انتقال[۱۸] تقاضا بین گرهها اعم از محصول، کالا، داده و انسانها به مدلها اضافه شدند.
در اوایل سال ۲۰۰۰ تا اواخر سال ۲۰۰۸ میلادی محققان در مقالات خود بیشتر به بحث نحوهی راه حل های بهینهی این مدل پرداختند و به این منظور انواع و اقسام الگوریتمهای ابتکاری را بر روی این مدلها آزمایش کردند.
الگوریتمهایی مانند شبیهسازی تبرید، جستجوی ممنوعه، انشعاب و تحدید، انشعاب و برش، کلونی مورچهها، کلونی زنبورها، الگوریتم ژن شناختی و … که همگی با گذشت زمان کاملتر شده و عیبها و نقصهایشان با آزمایش بر روی مدلهای متنوع مسائل مکانیابی محور بیشتر هویدا شد و با سعی و همت محققان این ضعفها برطرف و راه حل های بهینه بهبود و توسعه یافتند.
از اوایل سال ۲۰۰۹ تا به امروز محققان به بحثهای جدیدی مانند مسائل تصمیمگیری چندمعیاره، جنبهی دینامیکی سطوح پایینی هرم تصمیمگیری مانند سطح عملیاتی و تاکتیکی، بحث ترافیک جریان بین گرههای غیر محور و اتصال آنها به محورهای مواصلاتی، مسائل قابلیت اطمینان در قبال فجایع و بلایای طبیعی، عدم قطعیت پارامترها و … روی آوردهاند.
در این پایاننامه نیز سعی شده است تا در محیطی غیرقطعی با بهره گرفتن از رویکرد بهینهسازی استوار به بررسی عدم قطعیت پارامترهایی مانند هزینهی راهاندازی محور و ظرفیت هر محور در برآورده کردن تقاضای گرهها پرداخته شود. بر اساس آخرین اطلاعات ما تا این تاریخ تنها ۹ مقاله در ارتباط با بررسی عدم قطعیت در مسائل مکانیابی محور در مرور ادبیات ارائه شده است. در جدول (۲-۲) کارهای انجامگرفته در این زمینه را به صورت خیلی مختصر معرفی کرده و جایگاه خود را نیز مشخص کردهایم.
جدول (۲-۲): تعیین جایگاه این تحقیق و مروری بر ادبیات تحقیقات انجامشده
موضوع
سال
نویسنده(ها)
استفاده از سیستمهای صف M/D/c در حالت ظرفیت نامحدود محورها
۲۰۰۳
Marianov and Serra
تقاضای غیرقطعی و استفاده از برنامهریزی تصادفی دو مرحلهای
۲۰۰۹
Yang
استفاده از بهینهسازی استوار و ارائه یک الگوریتم ژنتیک چند هدفی برای حالت ظرفیت نامحدود مسئلهی مکانیابی محور
۲۰۰۹
HUANG and WANG
زمانهای مسافرتی به صورت غیرقطعی و الگوریتم ابتکاری جهت حل مدل
۲۰۰۹
Sim et al
تقاضا و هزینهی راهاندازی غیرقطعی در تخصیص چندگانه ظرفیت نامحدود
۲۰۱۱
Contreras et al
استفاده از سیستمهای صف M/D/c در حالت ظرفیت محدود محورها
۲۰۱۱
Mohammadi et al
فرم در حال بارگذاری ...
[یکشنبه 1401-04-05] [ 08:48:00 ب.ظ ]
|